Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2311109, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597752

RESUMO

Controlling the nanomorphology in bulk heterojunction photoactive blends is crucial for optimizing the performance and stability of organic photovoltaic (OPV) technologies. A promising approach is to alter the drying dynamics and consequently, the nanostructure of the blend film using solvent additives such as 1,8-diiodooctane (DIO). Although this approach is demonstrated extensively for OPV systems incorporating fullerene-based acceptors, it is unclear how solvent additive processing influences the morphology and stability of nonfullerene acceptor (NFA) systems. Here, small angle neutron scattering (SANS) is used to probe the nanomorphology of two model OPV systems processed with DIO: a fullerene-based system (PBDB-T:PC71BM) and an NFA-based system (PBDB-T:ITIC). To overcome the low intrinsic neutron scattering length density contrast in polymer:NFA blend films, the synthesis of a deuterated NFA analog (ITIC-d52) is reported. Using SANS, new insights into the nanoscale evolution of fullerene and NFA-based systems are provided by characterizing films immediately after fabrication, after thermal annealing, and after aging for 1 year. It is found that DIO processing influences fullerene and NFA-based systems differently with NFA-based systems characterized by more phase-separated domains. After long-term aging, SANS reveals both systems demonstrate some level of thermodynamic induced domain coarsening.

2.
J Am Chem Soc ; 146(11): 7763-7770, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38456418

RESUMO

Blends comprising organic semiconductors and inorganic quantum dots (QDs) are relevant for many optoelectronic applications and devices. However, the individual components in organic-QD blends have a strong tendency to aggregate and phase-separate during film processing, compromising both their structural and electronic properties. Here, we demonstrate a QD surface engineering approach using electronically active, highly soluble semiconductor ligands that are matched to the organic semiconductor host material to achieve well-dispersed inorganic-organic blend films, as characterized by X-ray and neutron scattering, and electron microscopies. This approach preserves the electronic properties of the organic and QD phases and also creates an optimized interface between them. We exemplify this in two emerging applications, singlet-fission-based photon multiplication (SF-PM) and triplet-triplet annihilation-based photon upconversion (TTA-UC). Steady-state and time-resolved optical spectroscopy shows that triplet excitons can be transferred with near unity efficiently across the organic-inorganic interface, while the organic films maintain efficient SF (190% yield) in the organic phase. By changing the relative energy between organic and inorganic components, yellow upconverted emission is observed upon 790 nm NIR excitation. Overall, we provide a highly versatile approach to overcome longstanding challenges in the blending of organic semiconductors with QDs that have relevance for many optical and optoelectronic applications.

3.
Nanoscale Horiz ; 8(8): 1090-1097, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37272286

RESUMO

Organic-inorganic nanocomposite films formed from blends of small-molecule organic semiconductors and colloidal quantum dots are attractive candidates for high efficiency, low-cost solar energy harvesting devices. Understanding and controlling the self-assembly of the resulting organic-inorganic nanocomposite films is crucial in optimising device performance, not only at a lab-scale but for large-scale, high-throughput printing and coating methods. Here, in situ grazing incidence X-ray scattering (GIXS) gives direct insights into how small-molecule organic semiconductors and colloidal quantum dots self-assemble during blade coating. Results show that for two blends separated only by a small difference in the structure of the small molecule forming the organic phase, crystallisation may proceed down two distinct routes. It either occurs spontaneously or is mediated by the formation of quantum dot aggregates. Irrespective of the initial crystallisation route, the small-molecule crystallisation acts to exclude the quantum dot inclusions from the growing crystalline matrix phase. These results provide important fundamental understanding of structure formation in nanocomposite films of organic small molecules and colloidal quantum dots prepared via solution processing routes. It highlights the fundamental difference to structural evolution which can be made by seemingly small changes in system composition. It provides routes for the structural design and optimisation of solution-processed nanocomposites that are compatible with the large-scale deposition manufacturing techniques that are crucial in driving their wider adoption in energy harvesting applications.

4.
Langmuir ; 39(13): 4799-4808, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-36940205

RESUMO

Controlling the dispersibility of nanocrystalline inorganic quantum dots (QDs) within organic semiconductor (OSC):QD nanocomposite films is critical for a wide range of optoelectronic devices. This work demonstrates how small changes to the OSC host molecule can have a dramatic detrimental effect on QD dispersibility within the host organic semiconductor matrix as quantified by grazing incidence X-ray scattering. It is commonplace to modify QD surface chemistry to enhance QD dispersibility within an OSC host. Here, an alternative route toward optimizing QD dispersibilities is demonstrated, which dramatically improves QD dispersibilities through blending two different OSCs to form a fully mixed OSC matrix phase.

5.
Nat Mater ; 21(5): 533-539, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35256791

RESUMO

Quantum dot (QD) solids are an emerging platform for developing a range of optoelectronic devices. Thus, understanding exciton dynamics is essential towards developing and optimizing QD devices. Here, using transient absorption microscopy, we reveal the initial exciton dynamics in QDs with femtosecond timescales. We observe high exciton diffusivity (~102 cm2 s-1) in lead chalcogenide QDs within the first few hundred femtoseconds after photoexcitation followed by a transition to a slower regime (~10-1-1 cm2 s-1). QD solids with larger interdot distances exhibit higher initial diffusivity and a delayed transition to the slower regime, while higher QD packing density and heterogeneity accelerate this transition. The fast transport regime occurs only in materials with exciton Bohr radii much larger than the QD sizes, suggesting the transport of delocalized excitons in this regime and a transition to slower transport governed by exciton localization. These findings suggest routes to control the optoelectronic properties of QD solids.


Assuntos
Pontos Quânticos , Compostos de Selênio
6.
Soft Matter ; 16(34): 7970-7981, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32766663

RESUMO

Nanocrystal quantum dots (QD) functionalised with active organic ligands hold significant promise as solar energy conversion materials, capable of multiexcitonic processes that could improve the efficiencies of single-junction photovoltaic devices. Small-angle X-ray and neutron scattering (SAXS and SANS) were used to characterize the structure of lead sulphide QDs post ligand-exchange with model acene-carboxylic acid ligands (benzoic acid, hydrocinnamic acid and naphthoic acid). Results demonstrate that hydrocinnamic acid and naphthoic acid ligated QDs form monolayer ligand shells, whilst benzoic acid ligated QDs possess ligand shells thicker than a monolayer. Further, the formation of a range of nanocomposite materials through the self-assembly of such acene-ligated QDs with an organic small-molecule semiconductor [5,12-bis((triisopropylsilyl)ethynyl)tetracene (TIPS-Tc)] is investigated. These materials are representative of a wider set of functional solar energy materials; here the focus is on structural studies, and their optoelectronic function is not investigated. As TIPS-Tc concentrations are increased, approaching the solubility limit, SANS data show that QD fractal-like features form, with structures possibly consistent with a diffusion limited aggregation mechanism. These, it is likely, act as heterogeneous nucleation agents for TIPS-Tc crystallization, generating agglomerates containing both QDs and TIPS-Tc. Within the TIPS-Tc crystals there seem to be three distinct QD morphologies: (i) at the crystallite centre (fractal-like QD aggregates acting as nucleating agents), (ii) trapped within the growing crystallite (giving rise to QD features ordered as sticky hard spheres), and (iii) a population of aggregate QDs at the periphery of the crystalline interface that were expelled from the growing TIPS-Tc crystal. Exposure of the QD:TIPS-Tc crystals to DMF vapour, a solvent known to be able to strip ligands from QDs, alters the spacing between PbS-hydrocinnamic acid and PbS-naphthoic acid ligated QD aggregate features. In contrast, for PbS-benzoic acid ligated QDs, DMF vapour exposure promotes the formation of ordered QD colloidal crystal type phases. This work thus demonstrates how different QD ligand chemistries control the interactions between QDs and an organic small molecule, leading to widely differing self-assembly processes. It highlights the unique capabilities of multiscale X-ray and neutron scattering in characterising such composite materials.

7.
Sci Data ; 7(1): 163, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32472045

RESUMO

High resolution X-ray nano-tomography experiments are often limited to a few tens of micrometer size volumes due to detector size. It is possible, through the use of multiple overlapping tomography scans, to produce a large area scan which can encompass a sample in its entirety. Mounting and positioning regions to be scanned is highly challenging and normally requires focused ion beam approaches. In this work we have imaged intact beetle scale cells mounted on the tip of a needle using a micromanipulator stage. Here we show X-ray holotomography data for single ultra-white scales from the beetles Lepidiota stigma (L. stigma) and Cyphochilus which exhibit the most effective scattering of white light in the literature. The final thresholded matrices represent a scan area of 25 × 70 × 362.5 µm and 25 × 67.5 × 235µm while maintaining a pixel resolution of 25 nm. This tomographic approach allowed the internal structure of the scales to be captured completely intact and undistorted by the sectioning required for traditional microscopy techniques.


Assuntos
Exoesqueleto/ultraestrutura , Besouros/ultraestrutura , Imageamento Tridimensional/métodos , Tomografia Computadorizada por Raios X , Animais
8.
J Phys Chem Lett ; 10(16): 4713-4719, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31362504

RESUMO

Nanocrystal quantum dots are generally coated with an organic ligand layer. These layers are a necessary consequence of their chemical synthesis, and in addition they play a key role in controlling the optical and electronic properties of the system. Here we describe a method for quantitative measurement of the ligand layer in 3 nm diameter lead sulfide-oleic acid quantum dots. Complementary small-angle X-ray and neutron scattering (SAXS and SANS) studies give a complete and quantitative picture of the nanoparticle structure. We find greater-than-monolayer coverage of oleic acid and a significant proportion of ligand remaining in solution, and we demonstrate reversible thermal cycling of the oleic acid coverage. We outline the effectiveness of simple purification procedures with applications in preparing dots for efficient ligand exchange. Our method is transferrable to a wide range of colloidal nanocrystals and ligand chemistries, providing the quantitative means to enable the rational design of ligand-exchange procedures.

9.
ACS Appl Mater Interfaces ; 11(29): 26194-26203, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31283167

RESUMO

Fluorination of conjugated molecules has been established as an effective structural modification strategy to influence properties and has attracted extensive attention in organic solar cells (OSCs). Here, we have investigated optoelectronic and photovoltaic property changes of OSCs made of polymer donors with the non-fullerene acceptors (NFAs) ITIC and IEICO and their fluorinated counterparts IT-4F and IEICO-4F. Device studies show that fluorinated NFAs lead to reduced Voc but increased Jsc and fill-factor (FF), and therefore, the ultimate influence to efficiency depends on the compensation of Voc loss and gains of Jsc and FF. Fluorination lowers energy levels of NFAs, reduces their electronic band gaps, and red-shifts the absorption spectra. The impact of fluorination on the molecular order depends on the specific NFA, and the conversion of ITIC to IT-4F reduces the structural order, which can be reversed after blending with the donor PBDB-T. Contrastingly, IEICO-4F presents stronger π-π stacking after fluorination from IEICO, and this is further strengthened after blending with the donor PTB7-Th. The photovoltaic blends universally present a donor-rich surface region which can promote charge transport and collection toward the anode in inverted OSCs. The fluorination of NFAs, however, reduces the fraction of donors in this donor-rich region, consequently encouraging the intermixing of donor/acceptor for efficient charge generation.

10.
Sci Rep ; 7: 44269, 2017 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-28287164

RESUMO

We demonstrate that the inclusion of a small amount of the co-solvent 1,8-diiodooctane in the preparation of a bulk-heterojunction photovoltaic device increases its power conversion efficiency by 20%, through a mechanism of transient plasticisation. We follow the removal of 1,8-diiodooctane directly after spin-coating using ellipsometry and ion beam analysis, while using small angle neutron scattering to characterise the morphological nanostructure evolution of the film. In PffBT4T-2OD/PC71BM devices, the power conversion efficiency increases from 7.2% to above 8.7% as a result of the coarsening of the phase domains. This coarsening process is assisted by thermal annealing and the slow evaporation of 1,8-diiodooctane, which we suggest, acts as a plasticiser to promote molecular mobility. Our results show that 1,8-diiodooctane can be completely removed from the film by a thermal annealing process at temperatures ≤100 °C and that there is an interplay between the evaporation rate of 1,8-diiodooctane and the rate of domain coarsening in the plasticized film which helps elucidate the mechanism by which additives improve device efficiency.

11.
Sci Rep ; 5: 18317, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26686280

RESUMO

Eurasian Jay (Garrulus glandarius) feathers display periodic variations in the reflected colour from white through light blue, dark blue and black. We find the structures responsible for the colour are continuous in their size and spatially controlled by the degree of spinodal phase separation in the corresponding region of the feather barb. Blue structures have a well-defined broadband ultra-violet (UV) to blue wavelength distribution; the corresponding nanostructure has characteristic spinodal morphology with a lengthscale of order 150 nm. White regions have a larger 200 nm nanostructure, consistent with a spinodal process that has coarsened further, yielding broader wavelength white reflectance. Our analysis shows that nanostructure in single bird feather barbs can be varied continuously by controlling the time the keratin network is allowed to phase separate before mobility in the system is arrested. Dynamic scaling analysis of the single barb scattering data implies that the phase separation arrest mechanism is rapid and also distinct from the spinodal phase separation mechanism i.e. it is not gelation or intermolecular re-association. Any growing lengthscale using this spinodal phase separation approach must first traverse the UV and blue wavelength regions, growing the structure by coarsening, resulting in a broad distribution of domain sizes.


Assuntos
Plumas/ultraestrutura , Queratinas/metabolismo , Passeriformes/metabolismo , Pigmentação , Animais , Cor , Plumas/metabolismo , Microscopia Eletrônica de Transmissão , Passeriformes/anatomia & histologia , Raios Ultravioleta
12.
Eur Phys J E Soft Matter ; 38(3): 14, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25743024

RESUMO

The mode of lysozyme protein adsorption at end-tethered thiol-terminated polyethylene oxide brushes grafted upon gold was determined in situ by neutron reflectivity using the INTER instrument at target station 2, ISIS, RAL, UK. It was found that the most probable position of protein adsorption at these weakly protein resistive brushes was at the gold-brush interface in the so-called primary protein position.


Assuntos
Ouro/química , Muramidase/química , Polietilenoglicóis/química , Adsorção , Difração de Nêutrons
13.
Sci Rep ; 4: 5286, 2014 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-24924096

RESUMO

We have used Soxhlet solvent purification to fractionate a broad molecular weight distribution of the polycarbazole polymer PCDTBT into three lower polydispersity molecular weight fractions. Organic photovoltaic devices were made using a blend of the fullerene acceptor PC71BM with the molecular weight fractions. An average power conversion efficiency of 5.89% (peak efficiency of 6.15%) was measured for PCDTBT blend devices with a number average molecular weight of Mn = 25.5 kDa. There was significant variation between the molecular weight fractions with low (Mn = 15.0 kDa) and high (Mn = 34.9 kDa) fractions producing devices with average efficiencies of 5.02% and 3.70% respectively. Neutron reflectivity measurements on these polymer:PC71BM blend layers showed that larger molecular weights leads to an increase in the polymer enrichment layer thickness at the anode interface, this improves efficiency up to a limiting point where the polymer solubility causes a reduction of the PCDTBT concentration in the active layer.

14.
J Vis Exp ; (83): e51129, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24457355

RESUMO

The spin echo resolved grazing incidence scattering (SERGIS) technique has been used to probe the length-scales associated with irregularly shaped crystallites. Neutrons are passed through two well defined regions of magnetic field; one before and one after the sample. The two magnetic field regions have opposite polarity and are tuned such that neutrons travelling through both regions, without being perturbed, will undergo the same number of precessions in opposing directions. In this case the neutron precession in the second arm is said to "echo" the first, and the original polarization of the beam is preserved. If the neutron interacts with a sample and scatters elastically the path through the second arm is not the same as the first and the original polarization is not recovered. Depolarization of the neutron beam is a highly sensitive probe at very small angles (<50 µrad) but still allows a high intensity, divergent beam to be used. The decrease in polarization of the beam reflected from the sample as compared to that from the reference sample can be directly related to structure within the sample. In comparison to scattering observed in neutron reflection measurements the SERGIS signals are often weak and are unlikely to be observed if the in-plane structures within the sample under investigation are dilute, disordered, small in size and polydisperse or the neutron scattering contrast is low. Therefore, good results will most likely be obtained using the SERGIS technique if the sample being measured consist of thin films on a flat substrate and contain scattering features that contains a high density of moderately sized features (30 nm to 5 µm) which scatter neutrons strongly or the features are arranged on a lattice. An advantage of the SERGIS technique is that it can probe structures in the plane of the sample.


Assuntos
Fulerenos/química , Difração de Nêutrons/métodos , Energia Solar , Cristalização , Microscopia de Força Atômica/métodos
15.
Public Underst Sci ; 23(1): 27-31, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24434708

RESUMO

This article presents a personal reflection on the evolution of thinking about public engagement with science in the UK, with a particular emphasis on the experience with nanotechnology.


Assuntos
Participação da Comunidade , Opinião Pública , Política Pública , Ciência/organização & administração , Acesso à Informação , Humanos , Nanotecnologia/legislação & jurisprudência , Nanotecnologia/organização & administração , Reino Unido
16.
Langmuir ; 29(20): 6116-22, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23617308

RESUMO

The adsorption of lysozyme protein was measured ex situ on well-characterized gold surfaces coated by end-tethered polyethylene oxide brushes of various molecular weights and controlled grafting densities. The adsorbed amount of protein for different molecular weight brushes was found to collapse onto one master curve when plotted against brush coverage. We interpret this relationship in terms of a model involving site-blocking of the adsorption of proteins at the substrate and discuss the role of the physical attraction of PEO segments to gold. We account for our observation of a simple exponential relationship between protein adsorption and normalized brush coverage with a simple protein adsorption model. In contrast to other studies in similar systems, we do not observe protein adsorption on brushes at high grafting density, and we suggest that this discrepancy may be due to the solubility effects of salt upon the brushes, influencing their protein binding affinity, in the limit of high grafting density and high brush volume fraction.


Assuntos
Ouro/química , Muramidase/química , Polietilenoglicóis/química , Adsorção , Peso Molecular , Muramidase/metabolismo , Propriedades de Superfície
17.
Eur Phys J E Soft Matter ; 35(12): 9807, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23239269

RESUMO

We report surface and interface effects in dynamics and chain conformation in the thin film of conjugated polymer PCDTBT. To probe dynamic anomalies, we measure the glass transition temperature (T(g)) of PCDTBT films as a function of thickness, and find that there is a significant depression in T(g) for films less than 100 nm thick; a result qualitatively similar to that observed in many other polymer film systems. However, for films less than 40 nm, the T(g) converges to a constant value of 20 K below its bulk value. Grazing incidence X-ray diffraction shows depth-dependent molecular organization that is associated with the unusual thickness-dependent dynamics.

18.
Langmuir ; 27(17): 11000-7, 2011 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-21793596

RESUMO

We have investigated a novel method of remotely switching the conformation of a weak polybase brush using an applied voltage. Surface-grafted polyelectrolyte brushes exhibit rich responsive behavior and show great promise as "smart surfaces", but existing switching methods involve physically or chemically changing the solution in contact with the brush. In this study, high grafting density poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes were grown from silicon surfaces using atom transfer radical polymerization. Optical ellipsometry and neutron reflectivity were used to measure changes in the profiles of the brushes in response to DC voltages applied between the brush substrate and a parallel electrode some distance away in the surrounding liquid (water or D(2)O). Positive voltages were shown to cause swelling, while negative voltages in some cases caused deswelling. Neutron reflectometry experiments were carried out on the INTER reflectometer (ISIS, Rutherford Appleton Laboratory, UK) allowing time-resolved measurements of polymer brush structure. The PDMAEMA brushes were shown to have a polymer volume fraction profile described by a Gaussian-terminated parabola both in the equilibrium and in the partially swollen states. At very high positive voltages (in this study, positive bias means positive voltage to the brush-bearing substrate), the brush chains were shown to be stretched to an extent comparable to their contour length, before being physically removed from the interface. Voltage-induced swelling was shown to exhibit a wider range of brush swelling states in comparison to pH switching, with the additional advantages that the stimulus is remotely controlled and may be fully automated.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(1 Pt 2): 015304, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20866681

RESUMO

A class of artificial microswimmers with combined translational and rotational self-propulsion is studied experimentally. The chemically fueled microswimmers are made of doublets of Janus colloidal beads with catalytic patches that are positioned at a fixed angle relative to one another. The mean-square displacement and the mean-square angular displacement of the active doublets are analyzed in the context of a simple Langevin description, using which the physical characteristics of the microswimmers such as the spontaneous translational and rotational velocities are extracted. Our work suggests strategies for designing microswimmers that could follow prescribed cycloidal trajectories.


Assuntos
Biomimética , Movimento (Física) , Coloides , Cinética , Microesferas , Platina/química , Rotação , Processos Estocásticos
20.
Langmuir ; 26(17): 13954-8, 2010 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-20672847

RESUMO

Here, a new procedure and method are presented for the production of highly grafted polymer brushes. Thiol-terminated polyethylene oxide (PEO-SH) of molecular weight (M(w)) 20,000 (20k) is grafted to a gold surface from highly concentrated aqueous solutions of nonthiolated polyethylene oxide homopolymer. The M(w) and volume fraction of the homopolymer solution are varied in order to control the grafting density of the resulting PEO-SH brush. As a result, 20k M(w) PEO-SH brushes with grafting densities up to 0.3 chains/nm(2) are achieved, as determined by ellipsometry. Highly concentrated homopolymer solutions of volume fraction greater than approximately 12% and M(w) greater than approximately 938 produce near-ideal solvent conditions for the 20k M(w) PEO-SH chains; we have found that this facilitates the achievement of higher grafting densities of end-functionalized polymer brushes than would be possible from simple solutions. We propose this as a suitable method for applications where the grafting density of a brush surface must be accurately varied and controlled consistently. The effect of chemisorption time and cleaning procedure on the resulting brush grafting density are also explored.


Assuntos
Polietilenoglicóis/síntese química , Ouro/química , Peso Molecular , Polietilenoglicóis/química , Silício/química , Soluções , Compostos de Sulfidrila/química , Propriedades de Superfície , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...